Bibliography

[AnCD15]Anzt, Hartwig, Edmond Chow, and Jack Dongarra. “Iterative sparse triangular solves for preconditioning.” European Conference on Parallel Processing. Springer Berlin Heidelberg, 2015.
[Barr94]Barrett, Richard, et al. Templates for the solution of linear systems: building blocks for iterative methods. Vol. 43. Siam, 1994.
[BaJM05]Baker, A. H., Jessup, E. R., & Manteuffel, T. (2005). A technique for accelerating the convergence of restarted GMRES. SIAM Journal on Matrix Analysis and Applications, 26(4), 962-984.
[BrGr02]Bröker, Oliver, and Marcus J. Grote. “Sparse approximate inverse smoothers for geometric and algebraic multigrid.” Applied numerical mathematics 41.1 (2002): 61-80.
[CaGP73]Caretto, L. S., et al. “Two calculation procedures for steady, three-dimensional flows with recirculation.” Proceedings of the third international conference on numerical methods in fluid mechanics. Springer Berlin Heidelberg, 1973.
[DeSh12]Demidov, D. E., and Shevchenko, D. V. “Modification of algebraic multigrid for effective GPGPU-based solution of nonstationary hydrodynamics problems.” Journal of Computational Science 3.6 (2012): 460-462.
[Fokk96]Fokkema, Diederik R. “Enhanced implementation of BiCGstab (l) for solving linear systems of equations.” Universiteit Utrecht. Mathematisch Instituut, 1996.
[FrVu01]Frank, Jason, and Cornelis Vuik. “On the construction of deflation-based preconditioners.” SIAM Journal on Scientific Computing 23.2 (2001): 442-462.
[GiSo11]Van Gijzen, Martin B., and Peter Sonneveld. “Algorithm 913: An elegant IDR (s) variant that efficiently exploits biorthogonality properties.” ACM Transactions on Mathematical Software (TOMS) 38.1 (2011): 5.
[Saad03]Saad, Yousef. Iterative methods for sparse linear systems. Siam, 2003.
[SaTu08]Sala, Marzio, and Raymond S. Tuminaro. “A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems.” SIAM Journal on Scientific Computing 31.1 (2008): 143-166.
[SlDi93]Sleijpen, Gerard LG, and Diederik R. Fokkema. “BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum.” Electronic Transactions on Numerical Analysis 1.11 (1993): 2000.
[Stue99]Stüben, Klaus. Algebraic multigrid (AMG): an introduction with applications. GMD-Forschungszentrum Informationstechnik, 1999.
[Stue07]Stüben, Klaus, et al. “Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation.” SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2007.
[TrOS01]Trottenberg, U., Oosterlee, C., and Schüller, A. Multigrid. Academic Press, London, 2001.