[Adam98]Adams, Mark. “A parallel maximal independent set algorithm”, in Proceedings 5th copper mountain conference on iterative methods, 1998.
[ABHT03]Adams, M., Brezina, M., Hu, J., & Tuminaro, R. (2003). Parallel multigrid smoothing: polynomial versus Gauss–Seidel. Journal of Computational Physics, 188(2), 593-610.
  1. Alexandrescu, Modern C++ design: generic programming and design patterns applied, AddisonWesley, 2001.
[AnCD15]Anzt, Hartwig, Edmond Chow, and Jack Dongarra. Iterative sparse triangular solves for preconditioning. European Conference on Parallel Processing. Springer Berlin Heidelberg, 2015.
[BaJM05]Baker, A. H., Jessup, E. R., & Manteuffel, T. (2005). A technique for accelerating the convergence of restarted GMRES. SIAM Journal on Matrix Analysis and Applications, 26(4), 962-984.
[Barr94]Barrett, Richard, et al. Templates for the solution of linear systems: building blocks for iterative methods. Vol. 43. Siam, 1994.
[BeGL05]Benzi, Michele, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems. Acta numerica 14 (2005): 1-137.
[BrGr02]Bröker, Oliver, and Marcus J. Grote. Sparse approximate inverse smoothers for geometric and algebraic multigrid. Applied numerical mathematics 41.1 (2002): 61-80.
[BrMH85]Brandt, A., McCormick, S., & Huge, J. (1985). Algebraic multigrid (AMG) for sparse matrix equations. Sparsity and its Applications, 257.
[BrCC15]Brown, Geoffrey L., David A. Collins, and Zhangxin Chen. Efficient preconditioning for algebraic multigrid and red-black ordering in adaptive-implicit black-oil simulations. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2015.
[CaGP73]Caretto, L. S., et al. Two calculation procedures for steady, three-dimensional flows with recirculation. Proceedings of the third international conference on numerical methods in fluid mechanics. Springer Berlin Heidelberg, 1973.
[ChPa15]Chow, Edmond, and Aftab Patel. Fine-grained parallel incomplete LU factorization. SIAM journal on Scientific Computing 37.2 (2015): C169-C193.
[DeSh12]Demidov, D. E., and Shevchenko, D. V. Modification of algebraic multigrid for effective GPGPU-based solution of nonstationary hydrodynamics problems. Journal of Computational Science 3.6 (2012): 460-462.
[DeRo19]Demidov, Denis, and Riccardo Rossi. Subdomain deflation combined with local AMG: A case study using AMGCL library. Lobachevskii Journal of Mathematics 41.4 (2020): 491-511.
[Demi19]Demidov, Denis. AMGCL: An efficient, flexible, and extensible algebraic multigrid implementation. Lobachevskii Journal of Mathematics 40.5 (2019): 535-546.
  1. Demidov, L. Mu, and B. Wang. Accelerating linear solvers for Stokes problems with C++ metaprogramming. Journal of Computational Science 49 (2021): 101285.
[Demi20]Demidov, Denis. AMGCL – A C++ library for efficient solution of large sparse linear systems. Software Impacts 6 (2020): 100037.
[Demi21]Demidov, D. E. Partial Reuse AMG Setup Cost Amortization Strategy for the Solution of Non-Steady State Problems. Lobachevskii Journal of Mathematics 42.11 (2021): 2530-2536.
[Demi22]Demidov, Denis. Efficient solution of 3D elasticity problems with smoothed aggregation algebraic multigrid and block arithmetics. arXiv preprint arXiv:2202:09056 (2022).
[ElHS08]Elman, Howard, et al. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. Journal of Computational Physics 227.3 (2008): 1790-1808.
[Fokk96]Fokkema, Diederik R. “Enhanced implementation of BiCGstab (l) for solving linear systems of equations.” Universiteit Utrecht. Mathematisch Instituut, 1996.
[FrVu01]Frank, Jason, and Cornelis Vuik. On the construction of deflation-based preconditioners. SIAM Journal on Scientific Computing 23.2 (2001): 442-462.
  1. Ghysels, P. Kłosiewicz, and W. Vanroose. Improving the arithmetic intensity of multigrid with the help of polynomial smoothers. Numer. Linear Algebra Appl. 2012;19:253-267.
[GiSo11]Van Gijzen, Martin B., and Peter Sonneveld. Algorithm 913: An elegant IDR (s) variant that efficiently exploits biorthogonality properties. ACM Transactions on Mathematical Software (TOMS) 38.1 (2011): 5.
[GmHJ15]Gmeiner, Björn, et al. A quantitative performance study for Stokes solvers at the extreme scale. Journal of Computational Science 17 (2016): 509-521.
[Grie14]Gries, Sebastian, et al. Preconditioning for efficiently applying algebraic multigrid in fully implicit reservoir simulations. SPE Journal 19.04 (2014): 726-736.
[GrHu97]Grote, Marcus J., and Thomas Huckle. Parallel preconditioning with sparse approximate inverses. SIAM Journal on Scientific Computing 18.3 (1997): 838-853.
  1. Meyers, Effective C++: 55 specific ways to improve your programs and designs, Pearson Education, 2005.
[MiKu03]Mittal, R. C., and A. H. Al-Kurdi. An efficient method for constructing an ILU preconditioner for solving large sparse nonsymmetric linear systems by the GMRES method. Computers & Mathematics with applications 45.10-11 (2003): 1757-1772.
[Saad03]Saad, Yousef. Iterative methods for sparse linear systems. Siam, 2003.
[SaTu08]Sala, Marzio, and Raymond S. Tuminaro. A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems. SIAM Journal on Scientific Computing 31.1 (2008): 143-166.
[SlDi93]Sleijpen, Gerard LG, and Diederik R. Fokkema. “BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum.” Electronic Transactions on Numerical Analysis 1.11 (1993): 2000.
[Stue07]Stüben, Klaus, et al. Algebraic multigrid methods (AMG) for the efficient solution of fully implicit formulations in reservoir simulation. SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2007.
[Stue99]Stüben, Klaus. Algebraic multigrid (AMG): an introduction with applications. GMD-Forschungszentrum Informationstechnik, 1999.
[TNVE09]Tang, J. M., Nabben, R., Vuik, C., & Erlangga, Y. A. (2009). Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. Journal of scientific computing, 39(3), 340-370.
[TrOS01]Trottenberg, U., Oosterlee, C., and Schüller, A. Multigrid. Academic Press, London, 2001.
[VaMB96]Vaněk, Petr, Jan Mandel, and Marian Brezina. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56.3 (1996): 179-196.
[ViBo92]Vincent, C., and R. Boyer. A preconditioned conjugate gradient Uzawa‐type method for the solution of the Stokes problem by mixed Q1–P0 stabilized finite elements. International journal for numerical methods in fluids 14.3 (1992): 289-298.